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Abstract-A new numerical method is presented for the analysis of combined natural convection and 
radiation heat transfer with applications in many engineering situations such as materials processing, 
combustion and fire research. Because of the recent interest in the low gravity environment of space, 
attention is devoted to both I-g and low-g applications. The two-dimensional mathematical model is 
represented by a set of coupled nonlinear integro-partial differential equations. Radiative exchange is 
formulated using the Discrete Exchange Factor method (DEF). This method considers point to point 
exchange and provides accurate results over a wide range of radiation parameters. Numerical results show 
that radiation significantly influences the flow and heat transfer in both low-g and l-g applications. In the 
low-g environment, convection is weak, and radiation can easily become the dominant heat transfer mode. 
It is also shown that volumetric heating by radiation gives rise to an intricate cell pattern in the top heated 

enclosure. 

INTRODUCTION 

DUE TO its widespread application in various engin- 
eering disciplines, natural convective heat transfer in 
enclosures has received considerable attention in the 
past decade. It has been common practice to neglect 
the contribution of radiative heat transfer in most of 
the problems considered. Nevertheless, there are 
many engineering applications such as fire research, 
combustion, and material processing (specifically 
crystal growth and glass forming) where radiation can 
interact strongly with natural convection. Therefore, 
recently, some attention has also been devoted to the 
interaction between natural convection and radiation. 
It is now understood that under certain circumstances 
thermal radiation not only alters the temperature 
field, but due to the coupling between the energy and 
momentum transfer, it can also significantly modify 
the flow [ 11. 

Most of the studies of the interaction between radi- 
ation and convection have focused on applications in 
l-g environment and the effect of the low-gravity 
environment on the interaction process has not yet 
been properly assessed. In ground-based applications, 
convective heat transfer often dominates radiation. 
But in the reduced acceleration environment of orbit- 
ing spacecraft, convection is weakened. In this case, 
radiation competing primarily with conduction, may 
predominate. One of the objectives of this paper is to 
show that due to the difference between the flow 

regimes which occur in l-g and low-g applications, 
the effect of radiation heat transfer on convection can 
be quite different for the two cases. 

A recent review by Ostrach [2] presents a com- 
prehensive survey of natural convection in enclosures. 
It is evident, that as a result of the various analytical, 
experimental, and numerical studies of the past 
decade, the general characteristics of natural con- 
vective heat transfer are now known for various tilt 
angles, aspect ratios, Grashof and Prandtl numbers, 
and thermal boundary conditions. The interaction 
between radiation and natural convection has also 
been the subject of reviews by Viskanta [3] and Yang 
[I]. Early investigations of the interaction between 
convection and radiation for participating media have 
been carried out by Lauriat [4, 51 who used the P-l 
differential approximation to represent radiative 
transfer in narrow vertical cavities. Later, Zhong et 
al. [6] extended the previous analyses by including 
the effects of tilt angle and variable properties ; they 
employed a sliced exponential wide band scheme to 
represent radiation heat transfer. Finally, Yucel et 

al. [7] used the discrete ordinate method to study 
combined natural convection and radiation heat 
transfer from a scattering medium in a square cavity 
and Kassemi and Duval [8,9] used a zonal approach 
to study the interaction of radiation with convection 
and its effect on crystal growth by vapor transport in 
rectangular enclosures. 

A brief review of the above work indicates that 
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NOMENCLATURE 

A surface area .I i temperature ratio, Tc; T,, 

B gravitational acceleration vector E emissivity 
E dimensionless emissive power 0 dimensionless temperature. T/T,, 
Gr Grashof number, &H3(T,,- T,)/v’ n thermal conductivity 
1-I height of the enclosure V coefficient of dynamic viscosity 

k, absorption coefficient 0 Stefan-Boltzmann constant 

k, scattering coefficient 70 optical thickness, /it. H 
k extinction coefficient, k;, +k, (1) inclination angle 
Nr conduction--radiation number, iI/ dimensionless stream function, tj*$ 

(A( 1 -y)/H)jaT; (11 dimensionless vorticity. CC)* :(LI:H ‘) Nu, 

c convective Nusselt number (lj(l scattering albedo. k/k,, 

N, number of radiation nodes in the medium 

N, number of radiation nodes on the 
surfaces 

Subscripts 

PI Prandtl number, vix 
c pertains to the cold wall 

qt (r!) dimensionless surface net radiative 
h pertains to the hot wall 

heat flux at r, 
i. .j denote receiving and sending nodes 

q”‘(r,) dimensionless volumetric net 
s denotes the enclosing wall surfaces 

radiative heat source at r, 
W, I. 2 denote the sidewalls. 

r position vector 
! time Superscript 
T temperature * denotes dimensional quantity. 
11 dimensionless velocity in the x-direction, 

lP~(~~/ff) Radiation exchange factors 
1’ dimensionless velocity in the y-direction, nW(r,, r,) total exchange factor between 

r*l(\*//f) volumes 
II’ numerical integration weight factor !IlLS’(r,. r,) total exchange factor between 
.Y. L , dimensionless coordinates, .x*/H, y*/H. volume and surface 

L%V(r,, r,) total exchange factor between 
Greek symbols surface and volume 

thermal diffusivity DSS(r,, r,) total exchange factor between 
coefficient of thermal expansion surfaces. 

because of the complexity of the nonlinear integro 
partial differential equations which describe this class 
of problems, researchers have usually been forced to 
invoke approximate techniques to represent multi- 
dimensional radiation exchange. The P-l differential 
approximation has served as a favorite radiation 
model (4, 51. This is mainly because the differential 

approximation reduces the integral equations describ- 
ing radiative transfer into a set of differential equa- 
tions which are compatible with the equations for 
transport of heat and momentum. The P-l approxi- 
mation is, however, severely limited and strictly speak- 
ing, the method is only accurate for optically thick 
media. The discrete ordinate method [7] has proved 
to be more accurate. This method works well for a 
highly scattering medium. Unfortunately, it suffers 
from the so-called ray effects and its accuracy deterio- 
rates as the level of scattering in the medium decreases 

[lo, 111. 
One of the promising techniques for the com- 

putation of multidimensional radiative exchange is 
the Discrete Exchange Factor (DEF) method which 

was applied to pure radiation heat transfer in a rec- 
tangular enclosure by Naraghi and Kassemi [12]. 
Unlike the differential approximation, the DEF 
method provides an exact treatment of multi- 
dimensional radiative transfer over a wide range of 
optical thicknesses. In contrast to the discrete ordinate 
method, it provides accurate results for both non- 
scattering and highly scattering media [ 121. 

The main advantage of DEF over the zone method 
is that it considers point to point radiation exchange. 
Therefore, for a two-dimensional problem, only one 
numerical integration is needed to evaluate the node- 
to-node exchange factors. In contrast, the zone 
method is based on zone to zone exchange. Thus, 
for a two-dimensional problem, five integrations are 
necessary to evaluate the zone-to-zone direct exchange 
areas. The other advantage of the DEF method is that 
it can accommodate a variety of different integration 
schemes and nodal arrangements. These range from 
the Gaussian quadratures which provide the best 
accuracy, through Simpson and trapezoidal methods 
which can easily match the uniform and nonuniform 
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nodal distributions of the finite difference grids, to the 
rectangular scheme which is ideally suited for incor- 
poration into the finite element codes [ 131. Therefore, 
the method is very versatile. The second objective of 
this paper is to demonstrate the effective incor- 
poration of the DEF method into finite-difference 
codes for combined heat transfer. 

MATHEMATICAL FORMULATION 

Consider a square cavity of height H, as depicted 
in Fig. 1. The cavity is at an angle 4 with respect to 
the gravitational vector. As in the classical natural 
convection problem, a hot wall, at a uniform tem- 
perature T,,, forms one side of the enclosure, while a 
cold wall, at a uniform temperature T,, forms the 
other. The sidewall boundaries are either insulated 
or subject to an imposed temperature profile. The 
boundary surfaces are assumed to be diffuse and gray 
with emissivity E. The fluid is modeled as a gray iso- 
tropically scattering medium with albedo wO. 

Transport in the cavity is governed by a system of 
nonlinear coupled conservation equations for mass, 
momentum, and energy. Radiative transfer is rep- 
resented by integroodifferential equations. Using the 
stream-function vorticity formulation and invoking 
the Boussinesq approximation, the momentum equa- 
tion is cast into the following dimensionless form : 

+s gsin$+gcos+ 
( > 

(1) 

where 

=h 

-I- 
cp =, 

g 

FIG. 1. The square enclosure. 

- 

(2) 

- 

H 

X 
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and 

a'$ a3j 
s+p=-0. (3) 

This equation is subject to the non-slip boundary con- 
ditions : 

u=v=O for y=O,l O<x<l (4) 

u=v=O for x=0,1 O,<y,<l. (5) 

The energy equation is written as a balance between 
convection, conduction and radiation. In dimen- 
sionless form, it is given by : 

The boundary conditions for the energy equation are 

fI = f&, 0, for x = 0, 1 0 < y d 1 (7) 

B=0,,8, for y=O,l O<x<l (8) 

where temperatures 0, = 1, 0, = y and 0, and O2 are 
defined below. 

The radiation source term in the energy equation is 
represented by the net radiative heat flux. Using the 
continuous exchange factor notation, this quantity is 
written as : 

q:“(r,) = 4(1 --0,)~9~(r~)- 
s 

d94(rj)DSV(r,,r,) 

S 

- 4(1 -wo)B4(rj)DVV(rj,r,). (9) 
I v 

In the above equation DSV and D VV are respectively 
the surface-to-volume and volume-to-volume total 
exchange factors. They represent the fraction of 
energy emitted from a differential surface or volume 
at rj that reaches a differential surface or volume at 
ri, directly, or after multiple reflections at the walls 
and/or scattering in the medium. For details, the 
reader is referred to Naraghi and Kassemi [ 121. 

Thermal boundary conditions are very important 
in combined heat transfer. If the sidewall temperatures 
are fixed, then temperatures 8, and e2 are prescribed 
parameters. For example, they may be given by the 
following linear profile : 

0, = 0(x,0) = ecx,i) = 1-x for w = 1,2. 

(10) 

On the other hand, if we consider the sidewalls to be 
insulated, then the wall temperatures are unknown 
variables of the problem. They have to be determined 
as part of the overall solution through a balance 
between radiation and convection (conduction) at the 
insulted walls. That is : 

ve.ii,= & q; 
0 

for w = 1,2. (11) 

Here, qz represents the net radiative heat flux at the 
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wall and is described by the following integral equa- 
tion. 

q{.(r,) = dP(r,)- 
s 

d4(r,)DSS(r,,r,) 
s 

- 4(1 -w,,)04(r,)DVS(r,.r,). (12) 
I \’ 

In the preceding equation, IXS and 0V.S are 
respectively the surface-to-surface and volume-to-sur- 

face total exchange factors between the sending 
location, r,, and receiving location, r,. Again, these 
expressions include the effect of multiple reflection 
and scattering, as well as, direct exchange between the 
surfaces and volumes [ 121. 

NUMERICAL FORMULATION 

In order to solve the system of nonlinear coupled 

partial differential equations, a staggered grid was 
utilized. In a staggered mesh, any four adjacent stream 
function nodes form the four corners of a control 
volume cell. At the center of this cell, the vorticity and 

temperature nodes are specified. The momentum and 
energy equations are discretized by the nominally 
third order accurate QUICK scheme [14]. The vor- 
ticity boundary conditions are determined in a man- 
ner consistent with the overall accuracy of the method 
[I 41. In the limiting case of natural convection in a 
square enclosure, current results for velocity, stream 
function, temperature, and Nusselt number (for 
20 x 20 and 40 x 40 grids) were compared with bench- 
mark solutions provided by de Vahl Davis [IS] and 
agreement was found to be excellent. 

The radiation source terms are lagged one step 
behind the Aow calculations. The source term in any 
control volume is simply calculated as an average of 
the net radiative fluxes at the corner stream function 
nodes which are evaluated according to DEF (equa- 
tions (9) and (12)) as : 

q;, = El,,- ,;, w,,E,,DS,S,- ; w,E,DV,S, 
i- 1 

(1% 

and 

2, 

q<“’ z E,- ; w,,E,,b?,V,- c w,E,D V, V,. 
i- I i- 1 

(14) 

The dimensionless surface and volume emissive pow- 
ers can be expressed in terms of temperature via 
E,<,, = E,B:, and E, = 4(1 -w,)O:, respectively. 

In this formulation, radiative heat transfer is rep- 
resented in terms of exchange between surface and 
volume nodes. The index i, pertains to a receiving 
surface or volume node and the index, j, denotes the 
sending surface or volume node. The weight factors, 
W, and W, correspond to the numerical integration 

scheme employed. As mentioned before, DEF can 
accommodate a variety of different integration 
schemes. Naturally, the distribution of the nodes, i 
and .;. and the magnitude of the weights, it’, and W, 
depend on the particular integration schcmc 

employed. Experience has shown that the Gaussian 
quadrature integration scheme produces the most 
accurate results. Unfortunately. when using this 

method. the integration points. which are the zeros 01 
the interpolating polynomial (i.e. Lcgendrc, Chcby- 

shev, etc.). do not usually coincide with the grids in 
the finite difference formulations. On the other hand. 

the trapezoidal. Simpson’s and rectangular methods, 
while lower in accuracy, can easily accommodate the 
finite difference grid structures. Flence, they provide 
greater flexibility. In any cast, because in a combined 
heat transfer situation, the grid size is determined by 
the discrctization of the flow equations. the number 
of nodes is ~rsually more than adequate for all the four 

schemes to provide accurate radiation predictions. 
In this work, Simpson’s integration scheme was 

chosen as a viable compromise between accuracy and 
flexibility. In the parametric range of interest. the 

details of the flow were adequately resolved by a 
20 x 20 grid. The integrity of the DEF method was 
verified through comparison with the limiting solu- 
tions provided by Larsen [I61 for combined con- 
duction and radiation in square enclosures. The agrec- 
mcnt between the temperature and wall heat flux 
results was within 1 %I. for the I1 x I I grid used b) 
Larsen. 

RESULTS AND DISCUSSION 

The results presented here arc limited to two basic 
configurations : horizontal, with the gravity vector per- 
pendicular to the imposed temperature gradient, and 
wrtid, with the gravity vector parallel to the imposed 
temperature gradient. Since. only the general charac- 
teristics of radiationconvection interactions arc 01 
interest. it is assumed that Pr = 0.70. c = 1.0. and 
(0,) = 0.0. 

The enclosute with insulated side walls at I-g is 
considered first. In the absence of radiation. the flow 

and temperature profiles are shown in Fig. 2. In this 
orientation (4 = 90’), the imposed temperature 
difference is perpendicular to the gravitational vector. 
Thcrcforc. at a Gr = I x IO’. a strong recirculating 
flow ensues in the cavity. The velocity vector ticld and 
stream function plot presented in Fig. 7 indicate the 

formation of two co-rotating vortices near the ccntci 
of the enclosure. From the temperature contours. it IS 
apparent that thermal boundary layers form along the 
hot and cold walls. The flow in the cnclosurc is driven 
mainly by the steep temperature gradients in these 
boundary layers. Therefore. as will be seen later. this 
Row is very sensitive to the thermal conditions in the 
vicinity of the hot and cold walls which can be easily 
perturbed by radiation. The temperature profiles of 

the insulated walls are shown in Fig. 3. Note that 
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Temperature 

FIG. 2. Flow inside the enclosure in absence of radiation effects ; Gr = I x lo’, y = 0.50, Nr --t co, TV = 0.0. 

because of the strong recirculating flow, there is a 
considerable difference between the temperature of 
the convectively cooled bottom wall, and the con- 

vectively heated top wall. 
The effects of radiation heat transfer are presented 

in Figs. 4-6 for Nr = 0.10. The transparent medium 
(ru = 0.0) is considered first. In this case, the vapor 
does not participate in the radiative transfer process, 
and radiation exchange only takes place between the 
enclosing surfaces. Figure 4 shows that, as a result of 
radiation exchange among the insulated walls and the 
hot wall, the temperature of the bottom wall dras- 
tically increases. The bottom wall, in turn, heats the 
vapor flowing above it, especially close to the hot wall. 
Consequently, as shown in Fig. 5, the axial tem- 
perature gradients near the hot wall are weakened and 
the thermal boundary layer near the hot wall thickens. 
The velocity and stream function plots of Fig. 5 indi- 
cate that the central vortices become weaker. Note, 
however, that the flow near the cold wall remains 

Velocity Field 

. ..______-.-...-_-.. 

...-~--‘~-~-~-----., 

. t ,.a-vw~vw-------, , 
I II/..- 

strong in order to dissipate the heat added by radi- 
ation into the cold sink. 

The participation of the medium in the combined 

heat transfer process is considered next. The results 

for an optical thickness of 1 .O are presented in Fig. 6. 
In this case, the medium can absorb radiation directly. 
Therefore, the fluid near the hot wall is affected by 
radiation heat transfer in two ways. First, it is heated 
directly by absorbing the radiation emitted by the hot 
wall. Secondly, it is affected indirectly by the radiative 
heat which is absorbed by the bottom wall and then 
convected into the medium. As indicated by the tem- 
perature contours in Fig. 6, this injection of heat by 
radiation completely disrupts the thermal boundary 
layer near the hot wall. Flow near the cold wall, how- 
ever, becomes slightly stronger to dissipate the extra 
heat delivered by radiation into the cold sink. There- 
fore, the double-vortex flow of the no-radiation case 
(Fig. 2) is replaced by the very vigorous single-cell 
recirculating ilow shown in Fig. 6. 

0.80 - 

0.00 0.20 0.40 0.60 0.80 1 .oo 0.00 0.20 0.40 0.60 0.80 1 .oo 

X X 

FIG. 3. Wall temperature distribution in the absence of 
radiation effects ; Gr= 1x105, y=O.SO, Nr+co, 

FIG. 4. Wall temperature distribution in the presence of 
surface radiation exchange; Gr = I x 105, y = 0.50, 

z. = 0.0. Nr = 0.10, z,, = 0.0. 



4146 M. F&SEMI and M. K N. NAKAGHI 

Temperature Streamlines Velocity Field 

Em. 5. Interaction of radiation with convection for a transparent medium: Gr 1 I x it)‘, ;a = i).SO. 

Temperature Streamlines Vetocity Field 

Fio. 6. Interaction of radiation with convection for a participating medium; (31’ = I r IO’, )’ = 0.50. 
/vu = 0.10. T” = 1.0. 

In order to summarize the effects of radiation on the 

boundary-layer driven flow and heat transfer which 
prevail in l-g applications, the hhavior of the con- 

vective Nusselt number (Table I) is considered. Both 
surface and volumetric radiation exchange cause a 
significant augmentation of the convective heat trans- 
fer at the cold wall. This is due to the fact that the 
extra heat imparted to the fluid by radiation has to 
be convected into the cold sink. Table 1, however, 
indicates that because of radiative interactions, the 
convective Nusselt number in the hot wail decreases. 
This is because both volumetric and surf&e radiation 

exchange contribute to the disintegration of the ther- 
mal boundary layer near the hot wall. 

Next, attention is focused on the situation which 

Table I. Effect of radiation on the mean convective Nusselt 
number 

Case Nu, Nu, h NI1,‘ Nu,,, 
--. ~~~~ ..- ..- _. -.. - 

Nr = co, = 0.0 -co 4.152 4.152 1.033 1.033 
Nr = 0.10, = 0.0 z. 4.750 3.381 2.407 1.480 
Nr = 0.10, = 1.0 Z” 5.295 2.915 3.371 1.832 

may occur at a g-level of (1 x 10 ‘),q, where convection 

is weakened considerably. Therefore, radiation has to 
compete only with conduction for the control of heat 
transfer. 

The low-g case in the absence of radiation effects is 

considered first. This is presented in Fig. 7 for 
Gr = 700. Note that in this case, the driving force 
for the flow is considerably reduced. Therefore, the 
recirculating flow is much weaker than the previous 
high Gr case and it can deform the temperature con- 
tours only slightly. Here, conduction is the mode of 
heat transfer. Unlike the previous boundary layer 
driven flow, this recirculating flow is driven by the 
temperature gradients in the core. As shown in Fig. 
8, the temperatures of the insulated walls are almost 
linear. The top wall is at a slightly higher temperature 
because it is heated by the hot fluid flowing in the top 
portion of the cavity. 

The effects of surface radiation exchange are stud- 
ied for a transparent fluid in the enclosure. lt is evident 
from Fig. 9 that, as a result of radiation emitted by 
the hot wall and absorbed by the insulated walls, the 
temperature of the sidewalls are drastically changed. 
Because of radiation exchange between the insulated 
walls, their temperature profiles become almost ident- 
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Temperature Strea Velocity Field 

FIG. 7. Flow inside the enclosure in absence of radiation effects ; Gr = 700, y = 0.50, Nr + co, r0 = 0.0. 

0.80 

0, 
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0.60 

I \ 
o.sot,,,,‘,,,,‘,~,,‘,‘,,‘,,,~ 

0.00 0.20 0.40 0.60 0.80 1 .oo 

X 

FIG. 8. Wall temperature distribution in the absence of 
radiation effects ; Gr = 700, y = 0.50, Nr -+ co, r0 = 0.0. 

l’wp\’ 
0.90 

0.80 

0, 

0.70 

Bottom wall cl Top wall ____--_ 

The effect of radiation on convective heat transfer 
in the low Gr regime is again summarized in Table 1. 
It is evident that because of radiation, convective heat 
transfer at the cold wall increases significantly. The 
convective Nusselt number at the hot wall also 
increases in the presence of radiation. This is in con- 
trast to the behavior noted for the high Gr flow and 
is mainly due to the drop in the insulated wall tem- 
peratures near the hot wall caused by radiative exch- 
ange (see Figs. 8 and 9). In this case, the fluid near 
the hot wall receives less heat from the sidewalls and, 
therefore, it can draw more heat by conduction from 
the hot wall. 

FIG. 9. Wall temperature distribution in the presence of Finally, the square cavity, in a top heating con- 
surface radiation exchange ; Gr = 700, y = 0.50, Nr = 0.10, figuration (I$ = 0) is considered under l-g conditions. 

Z” = 0.0. This orientation is often used to eliminate convection 

ical. The temperature contours in Fig. 10 indicate 
that the insulated walls impart the heat delivered by 
radiation to the recirculating fluid. This heat has to 
be dissipated at the cold wall. Steep axial temperature 
gradients are set up near the cold wall to conduct this 
extra heat into the sink. Consequently, as shown in 
the stream function and velocity field plots, the center 
of the recirculating cell moves slightly toward the cold 
wall. 

In low-g applications, the participation of the fluid 
in radiative transfer affects the temperature contours 
significantly. The results presented in Fig. 11 are for 
z0 = 1 .O and Nr = 0.10. In this case, because the med- 
ium absorbs the radiation emitted by the hot source, 
less radiation reaches the insulated walls. Hence, the 
transverse temperature gradients at these walls are 
reduced in comparison to those for the transparent 
fluid (see Fig. 10). Because the flow is weak, radiation 
becomes the dominant heat transfer mode in the med- 
ium ; as a result of the distributive nature of the emis- 
sion-absorption process, fluid temperatures in the 
transverse direction become very uniform. However, 
the axial temperature gradients must remain high, 
especially near the cold wall, in order to dissipate 
the extra heat added by radiation into the cold sink. 
Therefore, flow near the cold wall is intense and the 
center of the recirculating cell moves further towards 
this wall. 
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Velocity Field 

TemperaWe Streamlines Velocity Field 

FIG. I I. Interaction of radiation with convection for a participating medium ; Gr = 700, 7 = O.SO, 
NY = 0.10, T() = 1.0. 

on earth. However, the results presented in Fig. 12 
show that the convective stability of the top heated 
enclosure is disrupted by radiation heat transfer. In 
this case, linear temperature profiles are imposed on 
the sidewalls as described by equation (10) : thus the 

Velocity Fietd 

HOT 

effects of surface radiation exchange are absent. At a 

moderate optical thickness of I .O. radiation cman- 
sting from the walls penetrates into the medium. The 
fluid in the midsection of the cavity has a better view 
of the hot sources than the fluid near the sidewalls. 
Therefore, it is heated more by radiation and rises 
until it loses momcnt~. As a result of this motion 
induced by radiation, two vortices develop near the 
cold wall which drive two weaker counter-rotating 
vortices near the top of the enclosure. 

CONCLlJStONS 

The interaction between thermal radiation and 
natural convection in a square enclosure was studied 
numerically. The Discrete Exchange Factar (DEF) 
method proved to be convenient, versatile, and accur- 
ate for calculating radiation exchange in combined 
heat transfer problems. Radiation was found to wield 
a significant inAuence in both Iaw-{f and t-y apgii- 
cations : 

l In the high Gr situations which dominate most 
ground-based applications, because of both surface 
and volumetric radiation exchange, the boundary 
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layer driven flow is disrupted and the flow structure 

is considerably altered. 
l In the low Gr flows, which often prevail in low- 

g environment, the temperature distribution in the 
enclosure is significantly affected by radiation. In this 
situation, radiation has to compete solely with con- 
duction. Therefore, it becomes the dominant heat 
transfer mode even for moderate Nr and r,, values and 
has two major effects : 

1. it makes the temperature in the medium very 
uniform ; 

2. it modifies the behavior and the magnitude of 
convective heat transfer at the cold sink. 

l Finally, numerical predictions show that local 
temperature gradients induced by radiation heat 
transfer disrupts the convective stability of the top- 
heated enclosure in the l-g environment. 
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